Mostrando entradas con la etiqueta aceite. Mostrar todas las entradas
Mostrando entradas con la etiqueta aceite. Mostrar todas las entradas

domingo, 26 de diciembre de 2010

¿LA CRISIS POTENCIA EL AVP?

Últimamente cada vez es más habitual poder acceder a información sobre el uso de AVP en nuestro país. En la mayoría de ocasiones podemos ver en algún programa al estilo España en directo como se hacen eco de alguna mente "privilegiada" española que ha "inventado" como se puede usar el aceite como carburante, ante el asombro de propios y extraños ante esa "maravilla" de la tecnología montada sobre un vetusto vehículo diesel de más de 15 años...
Por suerte a nosotros ya estas noticias no nos vienen de nuevo y ya sabemos que esto no es un truco del maestro Copperfield y que es una cosa totalmente explicable por 4 conceptos básicos de mecánica y física.
Pero además últimamente nuestro querido mundo de internet se va haciendo eco del uso del aceite y en Youtube es cada vez más fácil ver gente que quiere demostrar que se puede ahorrar unas perrillas usando Diasol en lugar de diesel E+...









Evidentemente no puedo dejar de pensar que este éxito espectacular que está teniendo últimamente el AVP, no puedo verlo vinculado a una concienciación milagrosa en una economía sostenible sinó más bien en un recurso "fácil" por acceder a una energía barata y que además "parece" que funciona. No voy a ser yo quien se ponga aquí a sermonear sobre este error conceptual, porque evidentemente es una opción aparentemente barata; pero la realidad es esa, es sólo aparentemente barata porque lo que estan haciendo está tipificado en España como fraude fiscal, pues ese aceite no ha sido legalizado para ser usado como carburante. Nuestros amigos de Francia saben perfectamente de que estoy hablando, pues en su país ahora es legal para uso agrícola, pero no para automoción, y son bien conocidos las diversas sanciones y juicios que se han producido por el AVP en el país vecino. Para todos estos que creen haber inventado el maná, sólo les quiero decir que lo que están haciendo es delito pero además la difusión que están haciendo en sus videos también lo es.
Mientras, yo personalmente siempre recuerdo que este blog sólo sirve para difundir una tecnología viable, pero en ningún momento animamos a nadie a realizar pruebas al margen de la legislación española y para nuestros seguidores en otros países sólo me cabe recordar que se informen de cual es la legislación correspondiente sobre el uso del AVP en sus países respectivos.

lunes, 13 de diciembre de 2010

FELIZ 2011 ¿O NO?

Saludos de nuevo, después de un cierto periodo de ajetreo por un lado y de falta de novedades por otro, me han mantenido un poco alejado del blog.
Estamos a las puertas del 2011, y a nivel económico las cosas empiezan a demostrar que la típica crisis económica de turno no era lo que se nos venía encima. En estos meses se han empezado a mostrar unos sintomas muy preocupantes:
1. El Brent se dispara y como algunos pensabamos se situa con fuerza por encima de los 90$.
2. El sector del transporte no levanta cabeza y en gran parte ayuda a contener el precio del CIF mediterraneo por debajo de los 750$.
3. La guerra de divisas hace que progresivamente el Euro busque la paridad con el dolar.
4. La agencia mundial de la energía. Reconoce abiertamente que el Peak oil del petroleo "convencional" ya se ha sobrepasado.
5. Los países con problemas, llamados PIIGS, poco a poco van a valorar la subida de impuestos para hacer "caja". El ejemplo a seguir puede ser Grecia, que ha pasado ha tener los carburantes más caros de la U-27.

Todo esto nos pone ante un 2011 muy complicado. Pues el petroleo amenaza con superar los 100$ en plena recesión y si ha esto le añadimos la recuperación sólida de algunos motores económicos, el petroleo se pondrá sin problemas en 140$, pero con un Euro por debajo de los 1.35 $/€ y con un más que posible aumento de los impuestos de hidrocarburos. El resultado puede ser de traca.

Mientras en España el gobierno nos ignora, y mis e-mails a: Moncloa, ministerios, diputados, senadores... Caen en saco roto, bueno todos menos el del Sr. Feijoo que tuvo la delicadeza de contestarme por medio de su secretaría general, aunque sólo fuera para decir que el tema del AVP, quedara fuera de sus competencias le agradezco el tiempo dedicado en atenderme.
Bueno pues para que aprendan, les paso el enlace del gobierno de Alberta (CANADA), estos sí conocen el AVP y tienen una opinión razonable sobre el mismo.

http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/eng4435

sábado, 27 de febrero de 2010

ARTICULO PRENSA

Puntualmente no podemos dejar de sorprendernos con articulos de prensa donde de forma "peliculera" se presenta de forma asombrosa a tal o cual paisano "inventor" que usa aceites vegetales como combustible. Personalmente a veces estos textos me dejan en un estado entre: decepción, asombro y vergüenza ajena de que tengamos un país tan lleno de ignorancia.

De la página 20minutos traemos el siguiente artículo.

Recicla aceite de freír que le sirve de combustible para su automóvil

Recicla aceite de freír que le sirve de combustible para su automóvil  (Imagen: AGENCIAS)
  • Francisco adaptó su coche para que funcionara 100% con aceite usado.
  • Encontró en Internet todos los trucos para modificar el vehículo.
  • Asegura que todo son ventajas, salvo "el olor a fritanga".

Cerrar

N. M. S./ M. M.. 05.02.2008
El incesante aumento del precio del petróleo ha movido a muchas personas a buscar una forma de no depender tanto de este combustible. Es el caso de Francisco Villaverde, que hace seis meses adaptó el motor de su vehículo para que funcionara al 100% sólo con aceites de fritura reciclados.

Y es que Francisco ya no necesita ni pasarse por las gasolineras. Sus amigos y vecinos le llevan el aceite que ya no sirve para cocinar, éste lo filtra y lo mete directamente en el depósito. Asegura que el rendimiento del vehículo es exactamente el mismo con este biocombustible, si no mejor.

El método para trucar su coche lo encontró en Internet: "Sólo hay que cambiar unas pocas piezas", indica. Además, sostiene que este sistema ofrece muchas ventajas: es más limpio que los carburantes convencionales (el aceite vegetal no contiene azufre) y notablemente más barato. Los únicos defectos, según dice, son que hay que buscarse la vida para conseguir un abastecimiento regular de aceite usado y que "el tubo de escape huele siempre a fritanga".

Francisco está a favor de que cada vez más ciudadanos opten por esta forma de "autoabastecimiento" energético, que según dice ya es habitual en el mundo agrícola de Austria y Alemania. Anima además a cualquiera que tenga un diésel a que haga la prueba y "eche un 30% de aceite de girasol en el depósito".

martes, 23 de febrero de 2010

DEDICADO A NUESTRA QUERIDA MINISTRA, LA SRA. ESPINOSA

Saludos Sra. Ministra de agricultura, desde este modesto blog he osado dirigirme a usted para no sólo informarla de lo que no quiere saber sino para echarle en cara lo que me parece totalmente indignante.
Usted y sus predecesores aún no se han querido enterar que el aceite vegetal puro esta reconocido como un biocarburante en la legislación española, sepa:

Extracto de la ley de impuestos especiales 38/1992:

El artículo 46, apartado 1, letra g) 2º, de la Ley 38/1992, de 28 de diciembre, de Impuestos Especiales (BOE de 29 de diciembre), incluye, dentro del ámbito objetivo del Impuesto sobre Hidrocarburos, a “los productos que se indican a continuación cuando se destinen a un uso como combustible o como carburante:

2º Los productos clasificados en los códigos NC 1507 a 1518, ya se utilicen como tales o previa modificación o transformación química, incluidos los productos clasificados en el código NC 3824.90.99 obtenidos a partir de aquéllos”


NOTA: los codigos NC1507 al NC1518 corresponden a diferentes tipos de aceites: soja, oliva,girasol,coco,palma...

Sra. Espinosa, no lo digo yo, lo dicen sus colegas del ministerio de Hacienda y lo vienen diciendo desde el año 1992, el AVP es un biocarburante reconocido en la legislación de impuestos especiales.
Por favor dejen de tener engañados de una puñetera vez a los agricultores vendiendoles humo con "plantitas" de biodiesel que no tienen futuro y que sólo han servido para enterar cientos de millones de €. Sepa de una puñetera vez que Deutz-Fahr, Fendt o John Deere venden vehículos diseñados para AVP, pero que renuncian al mercado español porque ustedes, gobierno, no han hecho nada para promover el AVP. Sepa que muchos productores de oleaginosas podrían obtener unos ingresos extraordinarios, si su gobierno creara un marco favorable para el autoconsumo y la consiguiente venta de excedente... Si quieren ideas sobre el AVP yo tengo unas cuantas.
Por si aún no conoce mucho del tema, le puedo decir que para fabricar AVP sólo se necesita: un campo, semillas (girasol valen) y un molino de semillas y ya está... ¡Parece mentira!!,¡No necesitamos metanol, ni reactores, ni esterificaciones y además no nos molesta la glicerina!! Parece mentira pero es cierto, y lo mejor de todo es que nuestros abuelos en la postguerra lo sabian, ¡Nos ha fallado la memória histórica!!
Quizás le sería de gran ayuda si previamente intentaran tener técnicos en la administración que estuvieran mínimamente informados sobre el tema, estoy harto de hablar con ellos y me pongan cara de haber descubierto la rueda, por favor sepan que no he INVENTADO NADA, esto ya se inventó en el s. XIX y fué un tal Rudolf.
Sra ministra, si le interesa, le dejo unos enlaces de unos paiiiiiises muuuyyy lejanos donde usan AVP:
www.ouest.cuma.fr/Documents/energies/Energies%20renouvelables/Huile-vegetale-pure
www.pflanzenoel-austria.at
www.tfz.bayern.de/biokraftstoffe/31156/
www.bv-pflanzenoele.de

Sin más y esperando no haberla importunado demasiado me despido de usted.

PD: los enlaces llevan a páginas en su idioma correspondiente, espero que la Ministra no encuentre esto un inconveniente y sabrá encontrar entre los numerosos asesores del gobierno alguien que se los pueda traducir.

INFORME UNIVERSIDAD COLLEGE DUBLIN

Results of engine and vehicle testing of semi-refined rapeseed oil

Kevin P. McDonnell, Shane M. Ward & Paul B. McNulty

University College Dublin, Dept of Agricultural & Food Engineering, Earlsfort Terrace.
Dublin 2, Ireland.

ABSTRACT

The renewed interest in environmentally compatible fuels has led to the choice of rapeseed oil as the main alternative to diesel fuel in Europe. The objective of this research was to produce and test an economic and high quality non-esterified rapeseed oil suitable for use as a diesel fuel extender. This was achieved by acidified hot water degumming combined with filtration to five microns. This rapeseed oil, designated as a Semi Refined Oil (SRO), has a high viscosity in comparison with diesel. Hence SRO fuel can only be used as a diesel fuel extender, with inclusion rates of up to 25 %.

SRO proved to be a suitable diesel fuel extender, at inclusion rates up to 25 %, when used with direct injection combustion systems (viz. tractor type engines). Power output (at 540 rev/min at the power take off shaft) was reduced by c. 0.06% for every 1% increase in SRO inclusion rate, and brake specific fuel consumption (BSFC) increased by c. 0.14% per 1% increase in SRO inclusion rate (viz. a 25% SRO/diesel blend had a 1.5% decrease in power and a 3.5% increase in BSFC compared with diesel). These values are in accordance with the lower energy density of rapeseed oil fuels compared with diesel. Chemical and viscosity analysis of engine lubrication oil (after c. 170 hours per fuel tested), including metal contamination as an indicator of engine wear occurring, showed that there was no measurable effect on engine lubricating oil due to SRO inclusion in diesel oil. When SRO was used to fuel IDI engines (viz. light duty commercial vehicles), power was considerably reduced mainly due to inadequate air/fuel mixing.

KEYWORDS: Biodiesel, SRO, Injector Fouling, Engine Tests

INTRODUCTION

In 1900 at the Paris Exposition, Dr. Rudolf Diesel ran a prototype of his engine on groundnut oil (Lowry, 1990). In 1911 he was quoted as saying: "The diesel engine can be fed with vegetable oils and would help considerably in the development of agriculture of the countries which will use it". From the very beginning the diesel engine concept has been associated with vegetable oils as well as the original liquid coal-tar and later the petroleum derivatives (Seddon, 1942 and Wiebe et al., 1949). Initially, diesel engines were designed and developed to be of a dual-fuel nature, indeed it is believed that KHD Deutz engine manufacturers, Germany, warranted their original engines for operation with vegetable oils (Harwood, 1984). The practice of developing dual-fuelled engines continued up until the 1940's when two events caused a change in the development of the compression ignition engine. Firstly an abundance of petroleum supplies at a low cost tipped the fuel supply balance in favour of diesel fuel. Secondly, the effects of atmospheric pollution from automobiles were being felt in the Los Angeles basin and so that initiated the development of Clean Air legislation. This began to tighten the levels of emissions allowable from automobiles. The overall result of the two issues was to promote engine manufacturers to develop engines dedicated to run on diesel fuel oil and to tune the engine in order to decrease emissions thereby decreasing the ability of the engine to operate as a dual fuelled engine. Since the 1970's there has been a renewed interest in using vegetable oils in diesel engines for various reasons including: Political considerations, Environmental concerns, Economic aspects and European Union proposals.

The renewed interest in environmentally compatible fuels has led to the choice of rapeseed oil as the main alternative to diesel fuel in Europe. Esterified rapeseed oil (viz. rape methyl ester) has been the predominant vegetable oil fuel used because its characteristics are quite similar to diesel. It is, however, an expensive product (due to high processing costs) leading to renewed interest in an economic and high quality, non-esterified rapeseed oil. It has been demonstrated that the use of crude (gum content c. 2%) or degummed crude (gum content of 1.4%, this study) rapeseed oil leads to performance problems including filter blockages and engine coking. Gums are a major precursor of gel formation which becomes particularly problematic at temperatures below 2 °C. These problems can be ameliorated by using rapeseed oil which has been degummed to food grade standard (gum content < 0.2 %).

Methods and materials

The objective of this research was to produce an economic and high quality non-esterified rapeseed oil suitable for use as a diesel fuel extender. This was achieved by acidified hot water degumming combined with filtration to five microns. The resultant degummed and filtered oil, had a gum content, as determined by the Differential Scanning Calorimetry (DSC), of 0.13 %(w/w) compared with c. 1.4% for unfiltered degummed rapeseed oil, 0.4% for non winterised rape methyl ester and c. 2 % for crude rapeseed oil (manufacturers specifications). This rapeseed oil, designated as a Semi Refined Oil (SRO), has a high viscosity in comparison with diesel (589 mPa.s v. 22 mPa.s at -12 °C). Tests on fuel pumping systems have shown that, in order to support adequate fuel flow and atomisation, the maximum acceptable viscosity for a fuel, in order to prevent fuel starvation, is c. 55 mPa.s at - 12 °C. Hence SRO fuel can only be used as a diesel fuel extender, with inclusion rates of up to 25 % as the resultant blend has a viscosity of 55 mPa.s at -12°C. The 25% SRO/diesel blend has a slightly lower energy content than diesel (41 v. 43 MJ/kg) while its density is slightly higher (0.87 v. 0.85 kg/l).

The problems associated with the use of crude vegetable oils in diesel engines have been discussed elsewhere (Barsic and Humke, 1981, Ziejewski and Kaufman, 1983 Goering and Fry, 1984 and Kaufman et al., 1985). The main conclusion from these researchers is that coking is a potentially serious problem with unmodified vegetable oil fuels. A unique method (based on reduced injector needle opening pressure Virk et al., (1991) was used to accelerate fouling combined with 2-dimensional image analysis) for assessing injector fouling was developed which has the advantage of enabling a very rapid engine test cycle to be used. Current methods can require up to a five hour test cycle whereas this new procedure is based on a twenty minute engine cycle, shown to be equivalent to approximately 2 500 hours of normal engine operation. The method used fibre optics and a 2-dimensional image analysis package to assess the extent of injector coking. A Fouling Index (FI) based on the ratio between the fouled injector orifice area compared with a clean injector orifice area was developed which enabled the fouling propensity of various fuel blends to be correlated. This showed that injector orifice blocking increases with increasing SRO inclusion rates. For example, a 25% SRO /diesel blend gave a Fouling Index (FI) of 0.67 compared with 0.40 for diesel. This means that injector fouling would be expected to occur considerably faster when operating on a 25% SRO/diesel blend. Hence injector service intervals would need to be reduced accordingly (viz. an injector with a service interval of c. 1 000 hours would need to be serviced at c. 600 hours, i.e. 1 000 (0.4/0.67)). Further work is required to confirm these preliminary observations.

Results

In the Pennsylvania State University (Braun & Stephenson, 1982), short term tests were carried out on blends of degummed soyabean oil, ethanol and diesel in respective ratios of: 40: 20: 40, and 40: 30: 30. The engine was run for 25 hours on each blend. No problems were reported and no irregularities in the injector spray pattern was observed, however, the engine used for these tests was a 6 cylinder energy cell engine which utilises major and minor combustion chambers as in an indirect injection engine to aid turbulence and hence mixing of the air and fuel charge. This decreases the validity of comparing these results to standard agricultural diesel engines.

International Harvester Science and Technology Laboratory (Fort & Blumberg, 1982) conducted trials using blends of cottonseed oil and diesel oil. The cottonseed oil was refined almost to food grade in order to reduce its "particle content" to as low a value as possible by an inexpensive commercial treatment. The cottonseed oil was mixed with diesel in blends of: 30%, 50%, 65%, and 80% cottonseed oil. The tests consisted of 4 engine cycles at 15 hours per cycle. A 50% cottonseed oil: 50% diesel oil blend was chosen for a two hundred-hour endurance test. The short-term tests showed no significant differences between the fuels. After the endurance test the engine showed scoring on two of the cylinders, the corresponding pistons were also deeply scored with the surfaces torn. All the engines' top rings were heavily filled with a very hard carbonaceous deposit, which was obstructing the rings functions.

Barsic et al., (1981 a and b) evaluated crude soyabean oil, a 50: 50 mixture of crude soyabean oil and diesel, and degummed soyabean oil in a direct injection engine. The vegetable oils were evaluated in short-term tests i.e. 25 hours. Comparison of the engines performance and emissions for diesel versus the vegetable oils resulted in 1-2 g/l kWh lower thermal efficiency, 1-2 g/l kWh lower NOx, 2-20 g/l kWh more carbon monoxide, 1-2 g/l kWh more hydrocarbons and 1-2 g/l kWh more particulates for the vegetable oil. Comparing crude soyabean oil and degummed soyabean oil resulted in a 6% lower thermal efficiency for the crude oil versus a 1% lower thermal efficiency for the degummed oil. The coking of nozzles in both cases increased the emissions, with the crude soyabean giving a greater increase in total emissions than the degummed oil after 25 hours.

Jori and Hanzely (1993) experimented with rapeseed oil and rape methyl ester mixtures i.e. using rape methyl ester instead of diesel to lower the viscosity of the rapeseed oil. This was compared with both diesel and rape methyl ester. The performance of three tractors tested with a power take-off dynamometer was evaluated and concluded that there were no limitations with the use of rape oil fuels. The different fuels decreased the engine power by between 2-4% with a slightly improved energy consumption and combustion efficiencies. The rapeseed oil fuels had lower oxides of nitrogen, hydrocarbons and smoke emissions but slightly higher carbon monoxide emissions compared to diesel.

Worgetter (1981) carried out a series of tests using a research college tractor, which was fuelled with a blend of 50% (v/v) rapeseed oil and diesel. The rapeseed oil used was of food grade quality. These tests showed a power loss after 100 hours. At 350 hours the injector nozzles were visually inspected and although there were carbon residues, the manufacturer deemed that the injectors were suitable for continued use. The tests were stopped due to power losses and to prevent carbon deposits on the upper piston area.

King (1995) examined degummed and filtered rapeseed oil as a diesel fuel extender for direct injection engines. In that research a 15/85 (%v/v) blend of degummed and filtered rapeseed oil/ diesel was used to power a conventional agricultural tractor for c. 400 hours. Dynamometer testing showed that the outputs of power and torque were on average 2.5% lower on the test fuel compared with diesel. Brake specific fuel consumption was 1.5% higher with the test fuel also. An analysis of the engine lubricating oil for both diesel and the test blend showed no abnormal wear or elemental composition changes in the lubricating oil for the test fuel as compared to the diesel lubricating oil sample.

Semi Refined rapeseed Oil (SRO) proved to be a suitable diesel fuel extender, at inclusion rates up to 25 %, when used with direct injection combustion systems (viz. tractor type engines). Power output (at 540 rev/min at the power take off shaft) was reduced by c. 0.06% for every 1% increase in SRO inclusion rate, and brake specific fuel consumption (BSFC) increased by c. 0.14% per 1% increase in SRO inclusion rate (viz. a 25% SRO/diesel blend had a 1.5% decrease in power and a 3.5% increase in BSFC compared with diesel). These values are in accordance with the lower energy density of rapeseed oil fuels compared with diesel. Chemical and viscosity analysis of engine lubrication oil (after c. 170 hours per fuel tested), including metal contamination as an indicator of engine wear occurring, showed that there was no measurable effect on engine lubricating oil due to SRO inclusion in diesel oil. When SRO was used to fuel indirect injection combustion systems (viz. light duty commercial vehicles), power was considerably reduced mainly due to inadequate air/fuel mixing.

Conclusion

It was concluded that SRO can be used as a diesel fuel extender in unmodified direct injection diesel engines. The only practical difference observed in this study is that the injectors require more frequent servicing compared with diesel operation. The technology for producing SRO is relatively simple and hence offers the possibility of small, locally based production units as well as economic mass production units. Rape methyl ester requires major investment in industrial plant. For example, a rape methyl ester plant with a throughput of 36 000 tonnes per annum has an estimated capital cost of $18 million compared with approximately $3 million for an equivalent SRO rapeseed oil plant. Thus at road side diesel station, a 25% SRO/diesel blend would cost approximately $ 0.68/litre as compared to $0.73/litre for a 25% rape methyl ester/ diesel blend. Further work is required to determine if this cost advantage (7%) for a 25% SRO/diesel blend is sufficient to contravene any negative aspects of engine performance.

References:

1. Lowery J.P.A. 1990. Alternative fuels for automotive and stationary engines in developing countries. Institution of Mechanical Engineers Seminar, U.K., November 19-20, pp31-35.

2. Seddon R.H., 1942. Vegetable oils in commercial vehicles. Gas Oil Power, August, pp 136-146.

3. Wiebe R. & Nawakawska J. 1949. USDA Bibliographical US Government printing office, Bulletin no. 10.

4. Harwood H.J. 1984. Oleochemicals as a fuel; Mechanical and economic feasibility. Journal of the American Oil Chemists Society, 61 (2) pp 315-324.

5. Barsic N.J. & Humke A.L. 1981a. Performance and emission characteristics of a naturally aspirated diesel engine with vegetable oil fuels. Society of Automotive Engineers 810262 pp95-109.

6. Ziejewski M. & Kaufmann K.R. 1983. Laboratory endurance test of a sunflower oil blend in a diesel engine. Journal of the American Oil Chemists Society 60 (8) pp1567-1573.

7. Goering C.E. & Fry B. 1984. Engine durability screening test of a diesel oil/soy oil/ alcohol micro emulsion fuel oil. Journal of the American Oil Chemists Society 61 (10) pp. 1627-1632.

8. Kaufmann K.R., Ziejewski M., Pratt G.L. & Goettler H.J. 1985. Fuel injection anomalies observed during long term engine performance tests on alternative fuels. Society of Automotive Engineers 852089 pp 591-600.

9. Virk K., Herbstmann S. & Rawdon R. 1991. Development of direct injection diesel engine injector keep clean and clean up tests. Society of Automotive Engineers 912329 pp 820-830.

10. Braun D.E. & Stephenson K.O. 1982. Alternative fuel blends and diesel engine tests. Proceedings of the International Conference on Plant and Vegetable Oils as Fuels. American Society of Agricultural Engineers, August, pp294-299.

11. Fort E.F. & Blumberg P.N. 1982 Performance and durability of a turbocharged diesel engine fuelled with cottonseed oil blends. Proceedings of the International Conference on Plant and Vegetable Oils as Fuels. American Society of Agricultural Engineers, August, pp374-383.

12. Barsic N.J. & Humke A.L. 1981b. Performance and emission characteristics of a naturally aspirated diesel engine with vegetable oil fuels. Society of Automotive Engineers 810955 pp2925-2935.

13. Jori I.J. & Hanzely G. 1994. Biodiesel research in Hungry. Research Status Report, Institute of Agricultural Engineering, Godollo, Hungry.

14. Worgetter M. 1981. Results of a long term engine test based on rapeseed oil fuel. Contribution to ICEUM III, October, Berlin, Germany, Pergamon Press.

15. King A. 1995. Rapeseed oil as a diesel fuel extender. M.Eng.Sc. Thesis, National University of Ireland.

INFORME ACREVO

Seguimos en la linea de publicar diferentes articulos y/o informes donde se hable del uso del AVP. En este caso presentamos el informe ACREVO.

Final Report

Source: Final Report, 1998

Consortium: The project was co-ordinated by the Laboratoire de Combustion et Systemes Reactifs, Orleans (France), in partnership with ESEM/LME, Universite d'Orleans (France), St Etienne du Vouvray (France), Istituto di Ricerce sulla Combustione CNR, Napoli (Italy), Department of Chemistry, Unversity of Kaiserslautern (Germany), ICT, University of Karlsruhe (Germany), University College of Wales, Aberystwyth (UK) and Instituto Motori, Napoli (Italy).

Introduction

The objective of the ACREVO project developed by LCSR / CNRS in Orleans (France) is to investigate the burning characteristics of vegetable oil droplets from experiments conducted under high pressure and high temperature conditions. With such investigations, combustion performances of vegetable oils as biofuels for Diesel engines could be improved.

Many studies have examined the performances and pollutants emissions of Diesel engines using vegetable oils. Due to their physical differences as compared to Diesel fuel (especially a significantly higher viscosity), there are problems such as poor atomisation and coking tendencies in long-term test. It appears, therefore, important to study the mechanisms of deposit formation during vegetable oils combustion. To understand the vaporisation and combustion mechanisms of sprays in Diesel engines, it is necessary to isolate and study a droplet of this spray.

In part of the ACREVO project investigated the vaporisation and combustion of a vegetable oil droplet. Few studies provide basic data about the properties and characteristics of vegetable oil droplets vaporisation and combustion, although some single droplet experiments with two biomass oils, produced from the pyrolysis of oak and pine, have been carried out. Liquid-phase polymerisation and pyrolysis of the oxygenate-rich biomass oils lead to the formation of carbonaceous cenospheres. The vaporisation mechanism of a sunflower droplet has been investigated showing a micro-explosion mechanism inside the droplets that was more important, when using vegetable oils than with Diesel fuel.

Depending on the chemical composition of vegetable oils and their esters, the amount of residue formed become more or less. For various vegetable oils, a classification of vaporisation velocity has been established : copra > palm > sunflower > rapeseed > cotton > soy > linseed.

Several methods exist for the study of droplets. These include the fibre- suspended droplet, the freely-falling single droplet and the porous sphere. Many experiments have been conducted concerning the vaporisation and combustion of classic fuel droplets using these various methods. For the present project the fibre-suspended droplet technique was used. This method allowed the droplet to be maintained in a fixed position so that the vaporisation and combustion mechanisms could be monitored using a high speed camera.

To improve the use of vegetable oils as biofuels and decrease their effect on environment, it is also necessary to understand the chemical processes occurring during the combustion and to identify the products formed during pyrolysis and the oxidation. Several studies have investigated the thermal cracking of vegetable oils. Whatever the nature of vegetable oil and the temperature (400-500 ·C) pyrolysis transforms most of ester functions of triglycerides into carboxylic acids. The unsaturated chains are transformed into aromatic hydrocarbons. During the pyrolysis of sunflower oil the following compounds were identified : alcanes, alcenes, diolefins, carboxylic acids and aromatics.

Depending on the temperature, the thermal degradation of vegetable oils is a polymerisation (200-300 °C), a degradation of vegetable oils into acrolein, ketene, fatty acids then formation of alcanes, alcenes above 300 °C and finally a formation of a gas-liquid mixture from around 500 °C up. Information is available concerning the nature of compounds formed during the pyrolysis of rapeseed methyl ester. The main pyrolysis products are alcanes, alcenes, aromatics (benzene and toluene), methyl esters (both saturated and unsaturated). Ethylene is a major product at high temperature (850 °C) while methyl esters decompose to secondary products from around 600 °C and higher.

To complement the few existing studies concerning the oxidation of vegetable oil methyl esters (VOME) experiments have been conducted in a jet-stirred reactor in which it is possible to study the reactivity of VOME and the formation of the main oxidation products. This enables the elaboration of chemical kinetic models for the combustion of rapeseed methyl ester and other VOMEs. These have been investigated in a jet-stirred reactor at high temperature (800-1050 K) and at high pressure (1 Mpa).

Activities

Droplet vaporisation In order to improve combustion performances of vegetable oils as biofuels for Diesel engines, experiments about the vaporisation of vegetable oil methyl ester droplets have been conducted in a high pressure and high temperature droplet burning facility. The fibre- suspended droplet technique was used with high speed video camera to follow the histories of the droplets during their lifetimes. Experimental data agree with the d2-law, the standard model describing droplet vaporisation. From the d2(t) curves, it was possible to determine the average and instantaneous vaporisation rates at temperatures between 573 K and 773 K at atmospheric pressure. The vegetable oil methyl esters evaporate like pure components, with a very significant preheating phase. A comparison of experimental results with those predicted by the quasi-steady theory has been completed. The calculation shows that the influence of the quartz fibre is important at the end of the vaporisation, when the droplet size is comparable with the extremity of the quartz fibre.

Pyrolysis and combustion of vegetable oil fuel sprays These aspects have been examined in a shock tube between 900 and 2000 K at pressures between 3 and 20 + bar and with different fuel/oxygen ratios. High speed video photography has shown how the high pressure spray in injected into the reaction volume and is mixed by natural swirl. Homogeneous or heterogeneous combustion could be produced by injecting the fuel either before or after shock reflection. Combustion occurs near the end-plate where fuel droplets have been conditioned the longest time and near the side wall where the droplet/fuel density is greatest. The combustion spreads very quickly throughout the reactive volume containing the fuel. Fuels which contains either rapeseed oil other methyl esters burn in a different manner to normal Diesel, where the flame was reasonably uniform. With vegetable oil fuels pockets of burning could be seen, some of which persisted for long times suggesting that these were larger droplets which burned as a diffusion flame for times longer than the available than those available in an engine. Thus they were potential carbonising nuclei for the walls of a burner or engine.

A second injection of fuel at a later time directly, under the high temperature pressure conditions, gave a very rapid combustion over the reaction volume where the previous phenomenon was not seen but soot like clouds could be detected by photography. Pyrolysis of fuel at these high temperatures resulted in a much greater light emission which saturated the CCD camera.

Soot could also be seen as the mixture cooled highlighted against the bright background. The amount of soot collected from these combustions and pyrolyses generally gave less than from hydrocarbon fuels with little effect of reaction pressure on the amount found.

The PAHs detected from soot analysis were different to those found with gaseous hydrocarbon fuels such as heptane or toluene with the maximum amounts being acenaphthene, acenaphthylene and fluorene. The yields of PAH ( a fraction of a percent of the soot ) yields seemed to increase with temperature but showed little, if any, change with total pressure.

Characterisation of soot formed in a rapeseed oil flames. In order to allow complete computations of emitted pollutants, the choice was made of a laminar, diffusion flame of pre-vaporised oil in air. Since the use of vegetable oil was the first constraint, much of the project time has been taken up by the set-up of the process. To measure soot particles with accuracy required the use of laser light scattering (LLS) as a diagnostic. However it is impossible to distinguish soot and fine droplets, if located in the same area of the flame, using the classical optical techniques. The major difficulty, which has been encountered in this project, was to be able to survey the oil vaporisation continuously, and to validate the hypothesis of a gaseous flame. Following a feasibility study described in a previous report, this part of the project has been successfully realised. The main result obtained by the task consists of a vaporising process, for vegetable oil or other viscous fuel, which is optically controlled during the whole experiment duration. This ensemble can be applied to the other activities. The present study includes the design of an experimental oil atomisation set-up with a good knowledge of the droplets formed (stabilities of the sizes distribution and concentrations) and an understanding of the heating of the droplets cloud. The rapeseed oil droplets are completely evaporated when a small amount of butane is added to stabilise the laminar oil diffusion flame.

In order to distinguish the soot particles from the oil droplets, a numerical procedure has been performed to analyse the experimental data obtained by an optical extinction technique. An inversion code has been written and validated to extract the characterisations of residual droplets and soot from the extinction spectra. The presence of gas absorption bands in the flame had to be taken into account, too.

The complete characterisation of soot particles emitted by the laminar rapeseed oil flame, based on LLS technique at several angles has been developed.

Sooting zones Many investigations of soot volume fractions, particle radii and number densities in rapeseed methylester(RME)/nitrogen and acetylene/nitrogen jet diffusion flames have been completed. The measurements were performed using a new laser diagnostic technique which is based on a simultaneous detection of laser light scattering, laser-induced incandescence (LII) and extinction. The sooting zone of an acetylene/nitrogen jet diffusion flame was investigated using this technique and compared with that of a RME/nitrogen jet diffusion flame. The main result is that at the position of the maximum number density a minimum of the particle radius is observed. This result is consistent with the current soot formation mechanism, that predicts incipient soot formation at high number densities and small radii. The surface growth and oxidation of soot is consistent with the measurements. Acetylene showed a much faster formation of soot than the RME, which correlates with the higher soot formation tendency of acetylene as measured by the threshold soot index. In a high turbulent acetylene/nitrogen flame most of the soot is formed under segregated conditions indicating that time scales of soot formation and oxidation are smaller than those under turbulent mixing.

Fuel performance of a typical vegetable oil Several studies have been conducted to qualify various oil and their blends from plants and vegetables as alternative renewable energy source. However, these studies were generally conducted with test approach, without considering in detail all the aspects related to atomisation, thermal stability and combustion characteristics of these fuels. So, the performances as a fuel of a typical vegetable oil, the rapeseed oil, as well as blends of rapeseed oil/alcohol have been investigated in a 100 kW pilot plant available at IRC. Preliminary study of physical characteristics as the viscosity and the thermogravimetry profile have been carried out to check the stability of the rapeseed oil with the temperature and a study concerning the miscibility of the rapeseed oil with two different alcohols (methyl and ethyl) was carried out.

In addition the radial distribution of rapeseed oil and rapeseed oil/alcohol blend sprays have been investigated under varying conditions of pressure and temperature by mean of laser-based optical technique according to the Lorenz-Mie theory. The flames have been studied with particular regard to stable gasses (CO, CO2, NOx, O2 and hydro carbons), temperature, soot formation and burnout at different rapeseed oil preheating temperatures, All the data have been compared with those obtained with a classical diesel oil under the same burning . Results indicate that rapeseed oil seems is an effective substitute for diesel oil since it produces less soot and similar amounts of other pollutants. The presence of alcohol in the rapeseed oil improves the fuel and allows reduction in the preheating temperature.

Operating characteristics and emissions A comparative evaluation of the operating characteristics as well as the determination of the regulated and non-regulated exhaust gas emissions was carried out, including an investigations of the conversion rates of an oxidising catalyst. In addition engine performance and emission behaviour was characterised in terms of structural parameters relating to vegetable fuels. Finally variations were made in the fuel injection system of the test engine used in order to reduce the specific disadvantages of vegetable fuels. Different vegetable fuels were used and compared to Diesel fuel.

All the fuels had physical and chemical characteristics that allows their use in direct-injection-production-Diesel- engines. One of the fuels used was a rape seed oil mix fuel called TESSOL-NADI®, the others are transesterified from vegetable oils: the fatty acid methyl esters rape seed oil methyl ester (RME), soybean oil methylester (ME SJ), coconut oil methylester (ME K 8-18) and palm kernel oil methylester (ME PK 12-18F).

The experimental engine used was a turbocharged 3-cylinder-direct-injection-Diesel-engine of the type Deutz- MWM TD 226B-3 from the German manufacturer Deutz-Motorenwerke Mannheim AG with a total displacement of 3.12 litres, a compression ratio of 15.5, a maximum power of 54 kW at 2250 revs/min and a maximum torque of 277 Nm at 1500 rev/min.

When using TESSOL or RME there were only slight power and consumption disadvantages in comparison to Diesel fuel. However, with coconut and palm kernel oil methylester the operating characteristics were definitely worse, while soybean oil methylester fell between the two groups.

The emission results of unburned hydrocarbons (HC), carbon monoxide (CO), nitric oxides (NOX) and particulate matter (PM) confirm the advantages of RME in comparison to Diesel fuel . On one hand soybean, coconut and palm kernel oil methylester show some very good emission values, but on the other hand the restricted power and consumption behaviour has to be taken into account.

The good operating and exhaust gas behaviour of TESSOL was clearly reduced by incomplete combustion and lube oil dilution especially at low load (extreme case:idle). This is not very clear from the results shown, but has been proved definitely while driving the engine on the test bench.

Aldehyde- and ketone-emissions of vegetable fuels are partly similar to those of Diesel fuel, partly clearly richer.

Using an oxidising catalyst no disadvantages of vegetable fuels exist, except for the mix fuel TESSOL with its incomplete combustion. PAH-emissions are distinctly better for all vegetable fuels, so there seems to be a much lower risk of cancer while using fatty acid methylesters as fuel.

The chemical structure of the vegetable fuels has a great influence on engine performance and emission behaviour. NM K and ME PK show best results concerning emissions of hydrocarbons, carbon monoxide, particulate matter and PAH. RME gave the best results in terms of nitric oxides, power and fuel consumption. The mixing of rape seed oil with non-vegetable substances in leads to both negative and positive effects concerning different parameters. Variations of the fuel injection system of the Diesel engine can lead to a clear reduction of the originally high NOx emissions of vegetable fuels.

Nozzle tests Of the four different injection nozzles tested nozzle S 972 gave the best power results with RME, while nozzles SV 3141475 and SV 3141477 have best consumption behaviour at low speed. They have also got better HC-emissions and smoke number, but NOX-emissions are slightly worse. A higher nozzle position in the combustion chamber leads to lower emissions of nitric oxides, but over a maximum permissible position other emissions increase and performance decreases significantly. A later start in pump delivery also causes lower NOX emissions. Nozzle position and start of pump delivery can be changed at the same time, so that both effects add up giving a reduction of up to 75 % of the original value. The corresponding power loss for maximum speed of 2250 revs/min can be up to 17 %, for 2000 revs/min it is less than 10 % and for low speeds it is negligible.

Pollutants from oxidation of vegetable oil methyl esters In order to study the formation of the pollutants during oxidation of vegetable oil methyl esters experiments have been performed in a jet-stirred reactor. A study concerning the pyrolysis of three VOMEs at temperatures of 700 ·C and 800 ·C and at a pressure of 1 Mpa, enabled pyrolysis products to be identified. These included heavy compounds (acid methyl esters, from C11 to C21, saturated and unsaturated) and light compounds (alcenes, alcynes, benzene, toluene). From the experiments on concentration profiles of oxidation products were obtained by probe sampling and gas chromatography analysis. The following were measured: O2, H2, CO, CO2, CH4, C2H6, C2H4, C2H2, C3H6, I-C4H8, 1,3-C4H6, CH2O, CH3CHO, CH2:CHCHO. The maximum of mole fractions for CO and oxygenated compounds measured in the present experiments is lower for VOME than for a standard diesel fuel. A chemical kinetic reaction mechanism for the oxidation of VOME has been developed. It is based on that developed for the oxidation of large hydrocarbons (up to C10). A detailed chemical kinetic reaction mechanism has been proposed for the oxidation of a simple methyl ester:methyl acetate.

Results and discussion

The ability of a pure vegetable (VO) oil, the rape seed oil, to be atomised for combustion or engine purposes has been tested. Since the VO is very viscous at low temperatures, it was necessary to heat it to achieve the required increase in atomisation performances. VO was compared to two classical liquids: water, of interest in many fundamental studies of atomisation, and fuel oil, the practical interest of which is evident.

Tests were carried out with two types of atomisers of current use in combustion. Two atomisers were used, one of them (a pressure swirl atomiser) specially designed and built in Rouen for this study, the other was a standard Diesel injector.

The tests were not reduced to simple measurements of particle size distributions, but a complete qualitative and quantitative study of the sprays was conducted from direct optical observation and imaging. The analysis of results depended on the atomiser used. In the case of the pressure swirl atomiser, the processes involved (internal hydrodynamics, sheet instability, break up and drop formation) are sufficiently well known, and some predictions are at the moment possible. The results (cone angles, discharge coefficient, mean drop sizes etc.) could be analysed within the scope of the action of the main parameters (pressure, viscosity...). The study was reduced to atmospheric pressures, since this is the condition generally used use for this kind of injector (industrial furnaces for example). For Diesel sprays, the exact influence of the complex processes involved in liquid jet break up are not yet sufficiently known. Hence, the exploitation of the results was necessarily more elementary. Nevertheless information of primary interest for the practical use of VO in engines could be found in this work.

For use with pressure swirl atomiser, similar values of discharge coefficients may be obtained for fuel oil and heated (90-130 °C) VO. But the injection pressures needed to reach a stable zone (zone of pressure in which these angle or coefficient are independent of injection pressure) are much higher for VO than for fuel oil. This results in greater exit velocities and atomisation processes which are certainly complex. In addition, values of SMD are systematically greater at a given pressure for VO than for fuel oil. Even if these values begin to be comparable between VO at 130 °C and fuel oil, this is only obtained for high injection pressures (more than 20 Bar) As a summary, it may be recommended, for any attempt of using VO in an engine, to use the rape seed oil at relatively high temperature, of order 100-130 °C. An order of magnitude of drop sizes similar for fuel oil and VO may be found. But for Diesel sprays, the sensitivity to ambient air temperature is greater for VO than for FO.

Investigations of turbulent diffusion flames Relative soot volume fractions in a RME/nitrogen jet diffusion flame were carried out. The flame was a moderately turbulent flame with mainly buoyancy driven turbulence. The single shot data showed increasing turbulence with increased height above the burner. At the burner exit the flame showed the same behaviour as a laminar flame. At greater height above the burner the flame becomes unstable and changes from laminar to turbulent. Probability density functions (pdfs) were calculated from this data to show the fluctuations of the soot volume fractions at different locations in the flame. Increasing fluctuations were observed by the broadening of the pdfs with increasing height over burner.

The method for measuring of number density, particle radius and soot volume fraction by simultaneous measurement of two-dimensional LII, laser light scattering and extinction was tested with a laminar acetylene/nitrogen jet diffusion flame. A soot zone was mapped by this method. The main result of this investigation is that the maximum number density is located at the location where the minimum mean radius of the soot particles is observed. This observation is consistent with the current soot formation model that predicts the formation of small particles at high number density which then coagulate to larger particles. The maximum of the soot volume fraction was slightly displaced to the fuel lean side which can be explained by the surface growth of the particles. A higher mean radius at the fuel lean side is consistent with the faster oxidation of small particles in the oxidation zone. The data measured is, therefore, fully consistent with the present models of soot formation.

A RME/nitrogen jet diffusion flame was compared with an acetylene/nitrogen jet diffusion flame at the same burning conditions. The fuel flow rates were adjusted to the same stoichiometry. Acetylene forms soot much faster than RME. This result corresponds with the higher threshold soot index of acetylene. The number density and the radii show the same correlation as in the acetylene test flame. At high number densities low radii were found. The single shot measurements showed that the soot zones are very similar. The main difference between the two flames are that soot forms much faster in the acetylene flame. To investigate a high turbulent flame acetylene was used as fuel. The main results did not change. Both the single shot data and the averaged values (1000 shots) show the correlation between number density and radius found

Experiments were carried out in order to compare the atomisation quality of rapeseed oil and rapeseed oil/alcohol with that of a conventional fossil fuel such as diesel oil and to compare performances in terms of soot formation and burnout along the flames for all fuels. First of all the stability of the rapeseed oil with the temperature was checked by thermogravimetry analysis and it comes out that this oil is very stable up to 300°C in inert conditions and up to 200°C under an oxidative atmosphere. Due to this stability with the temperature it is possible to preheat the oil up to 150°C where it attains the same viscosity as the diesel oil. Atomisation tests showed that at 150°C the performance of the rapeseed oil are comparable with that of the diesel oil.

The overall combustion performance of the rapeseed oil are very satisfactory in comparison with the diesel fuel while the rapeseed oil produces almost 40 % less soot than diesel fuel. The different volatility of this fuel respect to the diesel fuel is responsible of the different behaviour of the sampled gas concentrations in the base of the flames while at the end of the flames, both attain almost the same values. It has been established that an addition of 9 % of ethyl alcohol (95 %) bring a great benefit regarding the pre-heating oil temperature. In fact, the presence of alcohol allows a reduction in the inlet oil temperature from 150 °C to 80 °C. Moreover, the combustion of the emulsion produces less soot and, at the exhaust, the amount is almost one half less than that produced by the combustion of rapeseed oil. It should be interesting to investigate more carefully the morphology of the rapeseed oil soot because of its higher reactivity toward oxidation shown by using TG analysis that can be correlated to higher hydrogen content.

Generally all measured operating characteristics power, torque, fuel consumption and efficiency prove, that when using these novel fuels there are only slight power and consumption disadvantages in comparison to Diesel fuel. Only with coconut and palm kernel oil methylester were the operating characteristics definitely worse, while soybean oil methylester is placed between the two groups.

Further it can be stressed, that the shown emission results of unburned hydrocarbons (HC), carbon monoxide (CO), nitric oxides (NOx) and particulate matter (PM) confirm the advantages of RME in comparison to Diesel fuel. However, in some tests combustion was poor so that part of the fuel went, as liquid, into the exhaust gas system. Consequently modifications are necessary in every case, either of the engine or of the fuel mixture.

Concerning polycyclic aromatic hydrocarbons (PAH) there is significantly better emission behaviour of RME in comparison to Diesel fuel. There are even greater emission advantages for other fatty acid methyl esters and with oxidising catalyst no disadvantages for TESSOL. In general there is a very low PAH-level of vegetable fuels because of chemical structure (there is no PAH in vegetable fuel in contrast to Diesel fuel).

Fuel structure and characteristics have been shown to have great influence on engine performance and emission behaviour. One of the most important parameters is the spectrum of fatty acids. Length of carbon chains and number of double bonds in the fuel molecules affect low temperature suitability, spray formation and carbon residue. Net calorific value and density also affect the energy content of cylinder charge. Short-chained coconut and palm kernel oil methyl ester have distinct emission advantages in terms of hydrocarbons, carbon monoxide, particulate matter and polycyclic aromatic hydrocarbons, but disadvantages as far as nitric oxides are concerned.

Because of their lower calorific values they show low engine power and high fuel consumption. Loner-chained rape seed oil methyl ester (RME) has got, relative to Diesel fuel, advantages concerning HC, CO, PM and PAH, while disadvantages as far as NOX is concerned are very small.

sábado, 20 de febrero de 2010

GREENBULL

A partir de este mes ponemos un enlace a la página de la gente de Greenbull. En nuestra opinión es un producto muy interesante para adaptaciones de "low-cost". En España colaboran con ellos la gente de Talleres Constantino Amigo, mail:constantinoamigo@1amigo.es.


Greenbull es una empresa austriaca situada cerca de Insbruck que llevan varios años haciendo adaptaciones para AVP, en los últimos años se están especializando en productos de bajo coste y apuestan fuertemente por soluciones que permitan el uso de aceites reciclados a un coste muy reducido. Su producto estrella es el "Kyoto filter", un filtro que se monta en lugar del filtro del lubricante, y aprovecha el calor de este para calefactar el AVP. La gran ventaja de este sistema es la simplicidad del montaje, pero también hemos comprovado que se reduce notablemente el tiempo de calefactado del AVP con respecto a los sistemas que usan el refrigerante del motor. En la mayoría de precámaras la adaptación se reduce al montaje de este filtro y una bomba Facet (que también venden), aunque la gente de Constantino Amigo recomiendan añadir una resistencia eléctrica para mejorar el arranque; en cualquier caso estamos hablando de adaptaciones para precámaras de entre 180€ y 350€ ,según vehículo, lo que es realmente un precio muy interesante.
Creemos que es un producto que por su relación calidad/precio puede facilitar que mucha gente dubitativa se anime a probar el uso del AVP.
Para los usuarios de reciclado os podemos adelantar que en breve nos han prometido que tendrán una novedad: una mini centrifugadora para poder limpiar el aceite cada uno en su casa.

Para los lectores de este blog nos prometen un trato especial.

contactos:
España: Talleres Constantino Amigo. Sr. Manuel Amigo- constantinoamigo@1amigo.es
Internacional: Green bull motors. Sr. Hans Pirker- info@greenbull.at

domingo, 31 de enero de 2010

ARTICULOS Y ESTUDIOS (II)

Un articulo de los Srs. Niels Anso y Jacob Bugge:

El aceite vegetal
puro (AVP), un
prometedor
combustible
ecológico para
motores
EL AVP1 ES EL BIOCOMBUSTIBLE
MÁS LIMPIO, Y FUNCIONA
El AVP se elabora a partir de plantas oleaginosas mediante
un simple proceso de prensado y filtrado/sedimentación; el
consumo energético en su proceso de producción desde el
suelo a la rueda (utilizando maquinaria) es equiparable con
el del diésel fósil (del pozo a la rueda): en torno al 13% del
contenido energético del combustible. Su rendimiento por
kilómetro es el mismo y diversas pruebas realizadas demuestran
que el AVP genera menos emisiones contaminantes que
el diésel. La producción de biodiésel y bioetanol requieren
más energía: en torno al 25% del contenido energético del
combustible.
Niels Anso y Jacob Bugge* (Dinamarca)
Especialmente en los motores modernos, el
AVP requiere una modificación considerable del
sistema de combustión (definida normalmente
como conversión del motor) por una vez y para
siempre, a partir de la cual el motor puede funcionar
con cualquier combustible, desde AVP sin
mezcla hasta cualquier combinación con biodiésel
y/o diésel fósil. Algunos motores anteriores a los
de cilindros (prechamber) funcionarán en climas cálidos con
una conversión mínima, como lo hacían los motores originales
diseñados por el inventor Rudolf Diesel. El precio de
producir biodiésel a partir de AVP es de unos 0,20 Euros
(0,28 $US) por litro.
El AVP no perjudica al medio ambiente; en la clasificación
alemana que determina los riesgos para el agua
(water hazard), que va del WG1 al WG3 (Wassergefährdungsklassen),
el AVP ni siquiera figura. El biodiésel y el
bioetanol aparecen en la categoría WG1, junto con el aceite
combustible pesado (heavy fuel oil), el metanol y otros productos
químicos; el diésel fósil está en la categoría WG2 y
el petróleo fósil en la WG3.
Para lograr un funcionamiento óptimo de los motores
diésel con AVP se deben satisfacer dos requisitos
básicos. Primero, el AVP debe cumplir con la normativa
específica para este tipo de combustibles (adaptada en lo
posible a la variedad vegetal utilizada; en el caso alemán,
se basa en la colza). Segundo, el motor debe convertirse
y optimizarse para su uso con AVP. El cumplimiento de
ambos requisitos asegurará una combustión eficiente del
AVP, una reducción de las emisiones y una larga vida útil
de los motores.
En todo el mundo, decenas de miles de motores
convertidos para funcionar con AVP son utilizados en
automóviles, camiones, tractores, trenes, generadores y
diversa maquinaria estacionaria y en al menos un modelo
de motocicleta.

ARTICULOS Y ESTUDIOS OFICIALES

El mundo del AVP, siempre se ha movido en un entorno de movimientos sociales antisistema que le han conferido un carácter de marginalidad. Nuestra intención es destapar su verdadero potencial real y hacer lo que no hace la administración española, informar. Por esta razón empezaremos a publicar una serie de estudios e informes que se han realizado en los últimos 20 años en diferentes países y que avalan el uso del AVP como carburante.
Para empezar, nadie mejor que la UE, por eso presentamos este artículo que se publicó en el IPTS de la comisión europea y que esta firmado por el Sr. Peder Jensen:

Aceite vegetal no modificado como combustible para automoción

Peder Jensen, IPTS

Asunto: El aceite vegetal se ha considerado como un posible combustible para automoción al menos desde 1912, cuando Rudolf Diesel (inventor del motor diesel) lo mencionó en una solicitud de patente. Desde la década de los 70 se ha venido trabajando en la modificación de los motores diesel, para adaptarlos a que funcionen con aceite vegetal no modificado o "directo" (straight vegetable oil, SVO). Se ha comprobado que el concepto es válido. Hay sin embargo, varios obstáculos estructurales que impiden el éxito de este combustible en el mercado, y que se deben abordar si se pretende que este combustible juegue un papel en el suministro de combustible en el futuro.

Relevancia: Europa está desarrollando actualmente una política de combustibles alternativos, destinada a diversificar el suministro de combustible para aumentar su seguridad, y simultáneamente tratar de limitar las emisiones de CO2. Una directiva sobre la promoción de biocombustibles para el transporte acaba de aprobarse y constituirá la base para la acción. Una estrategia clave a corto y medio plazo consiste en incrementar la proporción de biocombustibles en la mezcla. Puesto que los recursos de donde van a provenir los biocombustibles son limitados, es importante concentrarse en los sectores en los que los beneficios pueden ser mayores.

La opinión expresada aquí es la del autor y no refleja necesariamente la de la Comisión Europea.

Introducción

En noviembre de 2002, los telespectadores del programa de automóviles de la BBC "Top Gear" pudieron presenciar una interesante demostración. Unos 5 litros de aceite de cocina usado, procedentes de un asador local, fueron filtrados a través de una tela, se les añadió una cucharada de etanol y se vertió la mezcla en el depósito vacío de un viejo automóvil diesel Volvo. El coche arrancó y recorrió la pista de pruebas: el futuro del suministro de energía para nuestro parque automovilístico estaba asegurado.

Pero lo que no se trató en el programa fue una serie de temas tales como la duración, la posibilidad de arrancar en frío, el comportamiento medioambiental, etc. que podrían haber estropeado la historia. El propósito de este artículo es "rellenar los huecos" en este debate y situar al aceite vegetal directo en un nicho en el que pueda suponer una contribución importante, tanto para la economía agrícola como para la sostenibilidad del sistema de transporte.

El interés por utilizar aceite vegetal como combustible para vehículos se remonta a hace un siglo, cuando Rudolf Diesel imaginó el aceite vegetal como la fuente de combustible a largo plazo para los motores diesel

El interés por utilizar aceite vegetal como combustible para vehículos se remonta a hace un siglo, cuando Rudolf Diesel imaginó el aceite vegetal como la fuente de combustible a largo plazo para los motores diesel. Más recientemente, el sector agrícola se ha convertido en el promotor más fuerte, ya que el aceite vegetal constituye evidentemente una salida para productos agrícolas. Inicialmente se creía que sería posible utilizar esos aceites directamente, con sólo un ligero tratamiento. Las pruebas realizadas por la industria del motor han demostrado que los motores diesel sin modificar funcionarán inicialmente de un modo satisfactorio, pero pronto tendrán problemas de duración, principalmente en el área de los inyectores de combustible, los anillos de los pistones y la estabilidad del aceite lubricante. Por esta razón, las necesidades de los motores tienen que modificarse. Actualmente hay varias instalaciones que pueden realizar dichas modificaciones, principalmente en Alemania, donde más de 5.000 vehículos están utilizando ya SVO1. El último avance es que el SVO se ha reconocido formalmente como un biocombustible, junto con sus parientes más conocidos como el biodiesel y el bioetanol, con la aprobación de una directiva de la UE sobre promoción de biocombustibles, que menciona específicamente al "aceite vegetal puro de plantas oleaginosas" como combustible.

Proceso de producción y consumo del aceite vegetal

Se pueden utilizar muchos cultivos para la producción de SVO, pero en la práctica solamente se utiliza en la actualidad en Europa el aceite de colza. El proceso de producción es relativamente simple, ya que consiste sencillamente en cultivar y recolectar las semillas, prensar el aceite a baja temperatura y filtrar el producto final para eliminar las impurezas. Por tanto, la tecnología de producción se puede aplicar casi a cualquier escala.

Se pueden usar muchos cultivos para la producción de SVO, pero en la práctica solamente se utiliza en la actualidad en Europa el aceite de colza

La producción se halla limitada por la disponibilidad de tierra cultivable, en cuanto a extensión total de terreno utilizable; en cuanto a competencia con otros cultivos (alimentos, etc.); en cuanto a necesidades de rotación de cultivos (la colza sólo puede plantarse cada 5 a 7 años en el mismo terreno) y a causa del Acuerdo Blair House2 entre la UE y EE.UU, que limita la extensión disponible para la producción de aceites de semillas en la UE.

El prensado del aceite a pequeña escala, en una estructura descentralizada, generalmente dará como resultado un rendimiento total de aceite menor, puesto que el prensado en frío no es capaz de extraer todo el aceite de las semillas. Los valores típicos del rendimiento giran alrededor del 77%, si bien se pueden dar valores superiores al 87%. En molinos de aceite mayores, utilizando extracción con hexano como disolvente, el rendimiento típico es del 98% del contenido total de aceite de las semillas.3 El empleo de la extracción con hexano aumenta el coste del tratamiento, puesto que el hexano empleado en la extracción tiene que eliminarse antes de que el alimento proteínico (los residuos del prensado de las semillas) pueda utilizarse como pienso animal. Se trata por lo tanto de encontrar un compromiso económico, cuando se quieran utilizar los residuos como piensos.

Alemania ha establecido normas para los combustibles de aceites vegetales que también se están utilizando en otros países

Existe una norma de calidad para el mercado alemán (RK-Qualitätsstandard)4, que el SVO debe cumplir. Otros países siguen también la misma norma. Seguirla no es ningún problema para el aceite puro de colza prensado en frío, pero puede serlo para algunos aceites disponibles en el mercado, especialmente si se han prensado a temperaturas más altas para incrementar el rendimiento en el prensado. Por tanto, una adopción a mayor escala requeriría una separación en el mercado de los diferentes aceites, para asegurar una calidad adecuada a los consumidores. La utilización de aceites de cocina tendría problemas similares, y generalmente no se consideran como fuente para SVO, sino más bien para biodiesel.

Cuadro 1. Aceite vegetal y biodiesel

El aceite vegetal no modificado o "directo" (SVO), que a veces se denomina Aceite Vegetal Puro (Pure Plant Oil, PPO) (el término utilizado en la directiva de biocombustibles publicada por la Comisión Europea es "aceite vegetal puro de plantas oleaginosas"), es un aceite vegetal no modificado, como el aceite de colza, el aceite de semillas de mostaza, el aceite de pepitas de girasol, etc. En principio se podría utilizar la mayoría de los aceites disponibles en los supermercados. El SVO solamente tiene un rendimiento óptimo en los motores diesel modificados.

El aceite vegetal de residuos (Waste Vegetable Oil, WVO), consiste básicamente en aceite usado desechado por la industria alimentaria (por ejemplo, aceite de freír), que por lo tanto requiere algo de filtrado. Una vez limpio, puede utilizarse sin modificar como combustible, o como una base para biodiesel.

El biodiesel es un aceite vegetal que ha sido modificado químicamente mediante una reacción con metanol (eterizado) con lo que se obtiene un producto parecido al diesel (biodiesel) con glicerina como subproducto. El biodiesel puede utilizarse en motores no modificados, generalmente mezclado con diesel fósil.

El proceso de consumo es el mismo que el del combustible diesel ordinario, excepto por la necesidad de modificar los motores. Las modificaciones cuestan aproximadamente de 1.500 a 6.000 euros5, dependiendo del tipo de motor, taller, etc. y constituyen, como tal, un coste extra importante para el propietario del vehículo (algunos talleres ofrecen un kit para automontaje y un curso de instalación a un precio sensiblemente inferior). En la producción industrial a gran escala el coste debería ser sólo ligeramente superior al de un motor diesel normal, debido a la necesidad de un equipo de precalentamiento para el combustible (Ansø6 estima un coste adicional de menos de 300 euros). Un motor modificado para funcionar con SVO puede funcionar con diesel fósil, puesto que el funcionamiento general del motor es el mismo. Se puede asumir, sin embargo, que las modificaciones que se hacen en los inyectores, etc. afectarán a las características de combustión por lo que ya no funcionarán de modo óptimo con diesel fósil. El diesel fósil por tanto representa una solución sustitutiva mientras se circula por zonas sin acceso al SVO, pero no puede considerarse como condición normal de conducción del vehículo.

El SVO y el biodiesel se utilizan del mismo modo que el combustible normal, aunque las modificaciones que hay que hacer para adaptar un motor normal suponen un coste adicional

El mercado alemán de las soluciones con SVO es, con mucho, el más desarrollado, con más del 95% de la flota de vehículos SVO de Europa registrados en Alemania. Ello se debe, principalmente, a un grupo relativamente pequeño de entusiastas que han promocionado activamente el concepto y que han desarrollado los kits necesarios para modificar los motores, etc.

El sistema de distribución de SVO está menos desarrollado que el del diesel fósil. En el mercado mejor desarrollado hay unas 109 estaciones de suministro, muchas de las cuales tienen, sin embargo, un horario de apertura reducido (por ejemplo, dependiente del horario de un taller que realiza las modificaciones de los motores). Además, hay una red de proveedores que venden SVO a granel (por ejemplo 1.000 litros) lo que permite a los usuarios tener en sus domicilios un gran depósito para llenar, desde él, sus vehículos7.

Actualmente, el precio del SVO en Alemania es de 50-60 céntimos/litro, lo que aproximadamente es un 25% inferior al precio del diesel fósil. El consumidor tiene pues un incentivo económico para utilizar el SVO, siempre y cuando no se le apliquen impuestos. Puede esperarse, sin embargo, que el precio de mercado del SVO se incremente algo si el consumo aumenta significativamente. A pesar de que el contenido energético por volumen es de un 8 a 10% inferior al del diesel fósil, hay todavía una ganancia económica del 15% aproximadamente, en la actualidad.

Utilizar SVO es hoy menos conveniente que utilizar productos tradicionales. Por tanto, se debe deducir que la conversión es atractiva principalmente para conductores:

  • que se puedan beneficiar de los precios inferiores del SVO por sus grandes necesidades de desplazamiento;
  • o que adopten precozmente la tecnología por razones más idealistas.

Dada la infraestructura de distribución, más limitada, y la necesidad de convertir los motores, utilizar SVO es hoy menos conveniente que utilizar productos tradicionales. Por tanto es probable que sea atractivo para conductores que se puedan beneficiar de los precios inferiores o que lo adopten por sus ventajas medioambientales

Comportamiento medioambiental de los vehículos de SVO

La bibliografía científica sobre el comportamiento medioambiental de los vehículos de SVO es bastante limitada. Se presentaron algunos estudios hace 15 o 20 años, concluyendo en general que el aceite vegetal no era viable como combustible. La mayoría de estos estudios se realizó, sin embargo, con motores sin modificar y, como tales, no comparables con los modernos motores modificados.

La imagen que emerge de los ensayos con motores modificados indica que las emisiones de la mayoría de los contaminantes son algo menores en el caso de los SVO, pero hay una tendencia hacia emisiones iguales o ligeramente mayores de NOx y de partículas ultra finas. Sin embargo, como el azufre prácticamente no está presente en el combustible, los SVO deberían funcionar bien con sistemas de post-tratamiento de gases de escape, ofreciendo así mejoras importantes en las emisiones, en comparación con la norma actual. Está en curso un estudio en Alemania, para investigar estos temas en más detalle.

Los ensayos medioambientales con motores modificados indican que los SVO producen emisiones algo menores de la mayoría de los contaminantes., pero con una tendencia hacia emisiones iguales o ligeramente más elevadas de NOx y de partículas ultra finas

En cuanto al CO2, los ensayos muestran que los niveles de emisión son similares a los del diesel fósil. Pero si se descuenta la absorción de CO2 durante el crecimiento de la planta, la imagen cambia drásticamente, como ocurre también con otros biocombustibles. Dependiendo de las precondiciones en cuanto al uso de subproductos, la reducción indicativa de emisión de CO2, en comparación con el diesel fósil, es del orden de 80 a 96%8. Hay que reiterar que las reducciones son indicativas, ya que la disponibilidad, la transparencia y la comparabilidad de los diferentes estudios son limitadas. Según la reglamentación nacional alemana sobre la clasificación de los riesgos del agua, el SVO es inofensivo para las aguas subterráneas (clase NWG) lo que significa que los vertidos de aceite no causan daños apreciables al medio ambiente. En comparación, el biodiesel se encuadra en la clase de riesgos WG1, como el aceite bruto viscoso, el fueloil pesado y otros varios productos químicos y aceites minerales9.

Nicho de mercado para el SVO

El SVO representa sólo, hoy en día, un nicho marginal en el mercado de combustibles para el transporte. La mayoría de los vehículos que funcionan con SVO son vehículos estándar convertidos, pero ya hay kits para la conversión de muchos modelos corrientes de motores. Actualmente, la mayoría de los motores diesel del mercado se podrían convertir a SVO, incluyendo las versiones avanzadas de TDI y los motores especiales utilizados en vehículos de 3 litros/100 km. Uno de los principales proveedores de equipos de conversión ha desarrollado también un motor diseñado específicamente para funcionar con SVO. Además, un fabricante de tractores comercializa un tractor adaptado específicamente al SVO, como parte de un programa de introducción en el mercado. Por tanto, la tecnología se debe considerar como disponible y lista para el mercado, aunque todavía no exista producción a gran escala.

Si toda la tierra agrícola en la Europa de los 15 se incluyera en una rotación de cultivos de colza de 6 años, la producción total de SVO cubriría aproximadamente un 9% del consumo total de energía para el transporte. Por tanto, incluso en este escenario extremadamente optimista, el SVO sólo cubriría una pequeña proporción de la demanda de energía

Si toda la tierra agrícola en la Europa de los 15 se incluyera en una rotación de cultivos de colza de 6 años, la producción total de SVO cubriría aproximadamente un 9% del consumo total de energía para el transporte. Por tanto, incluso en este escenario extremadamente optimista, el SVO sólo cubriría una pequeña proporción de la demanda de energía. Un escenario más realista, que tenga en cuenta otros usos de la tierra, etc. contemplaría una participación en el mercado de menos del 5%. Por tanto, si el SVO no es un combustible importante, ¿dónde está el nicho que puede ocupar?

  • Los escasos requisitos de tratamiento significan que el SVO se puede producir localmente, lo cual es una ventaja, desde el punto de vista del transporte, pero al mismo tiempo puede conducir a una producción de menor calidad, ya que los esquemas de control serán más difíciles de implementar.
  • La producción local puede evadir los impuestos, incluido el IVA, un problema importante y que, como tal, representa un problema similar a los planteados por las "tiendas en granjas" donde los huevos, etc. se venden directamente. Los políticos pueden mostrarse reticentes para aceptar el SVO.
  • La técnica de producción poco sofisticada puede significar que haya poco espacio para más fuertes inversiones de capital en el área, ya que es más difícil gestionar y obtener un retorno razonable de las microinversiones. Por tanto la industria y los inversores pueden mostrarse reticentes en adoptar el SVO. En este contexto, el biodiesel les ofrece una alternativa mejor, ya que los requisitos de tratamiento se adaptan mejor a las mayores inversiones en plantas de conversión.
  • La necesidad de una infraestructura de distribución separada significa que los distribuidores de combustible son generalmente reacios a aceptar el SVO. No incrementa el mercado total, pero añade costes en el punto de distribución, ya que necesita tanques separados, bombas, etc.
  • La necesidad de modificar los motores significa que los fabricantes de automóviles deberán comercializar un modelo adicional de sus motores, aumentando los costes medios (debido a las series de producción menores en promedio) pero no los beneficios, ya que compiten con sus propios vehículos diesel.

En vista de los muchos obstáculos estructurales, es difícil que el SVO despegue sin una intervención externa. El SVO es una tecnología interesante en busca de su propio nicho. Para evitar que tenga que vencer todos los obstáculos de una vez, es necesario identificar un nicho en el que algunos de esos obstáculos estén ausentes. Los tractores agrícolas podrían ser uno de ellos:

  • Los tractores sólo se utilizarán habitualmente en las cercanías del lugar de producción del SVO.
  • Los tractores generalmente no están sometidos a las mismas reglamentaciones medioambientales estrictas, puesto que se usan casi siempre fuera de las zonas urbanas; por tanto, pueden utilizar un combustible que ofrezca parámetros medioambientales prometedores, aunque no se hayan comprobado plenamente, de un modo científico.
  • El combustible para tractores constituye un coste de producción interno en agricultura y, como tal, suele estar exento del IVA.
  • Los tractores representan un mercado bien definido de un tamaño (2-4 % del consumo de combustible) comparable a los recursos de que razonablemente se pueda disponer.
  • Los tractores se surten habitualmente de un tanque local en la explotación agraria y, por tanto, dependen sólo de una infraestructura de distribución en la que el SVO no se produce en la propia explotación.

El uso agrícola es un nicho potencial atractivo para el SVO, debido a una serie de factores como la utilización de depósitos de almacenamiento locales, los desplazamientos a distancias cortas, el régimen fiscal, etc.

Así pues, convertir la flota de tractores (y posiblemente otra maquinaria) a SVO podría dar lugar a un nicho importante para este combustible. Además, siempre habrá idealistas: algunos agricultores que utilicen SVO, probablemente optarán por una solución similar para sus vehículos privados; pero esto no es diferente de lo que ocurre hoy, cuando algunos llenan sus coches con diesel de sus propios tanques de almacenamiento, aunque ello no sea siempre legal, por razones de seguridad o fiscales.

Introducción del SVO en el mercado

Para que tal escenario se haga realidad, deberán intervenir una serie de actores:

  • Los fabricantes de tractores tendrán que instalar las adaptaciones necesarias en sus motores, ya en la fábrica. No hace falta decir que la instalación será siempre más barata si forma parte del proceso de producción del motor, en vez de ser una modificación posterior. Esto resolvería también los problemas de garantía que generalmente afectan a las modificaciones de los motores, cuando el fabricante original no la cubre si el motor ha sido modificado.
  • Los molinos de aceite deben garantizar que pueden suministrar una cantidad de combustible verificable a sus clientes, y crear servicios de distribución a granel.
  • Los políticos deben garantizar que las políticas agrícola y fiscal se adapten para favorecer la producción de semillas oleaginosas. Ello podría suponer negociar modificaciones a los acuerdos internacionales sobre dichas semillas en terrenos especialmente dedicados.

Los posibles beneficios de tales cambios políticos serían, entre otros:

  • Un sistema de transporte más sostenible (en la medida en que los tractores se cuenten como parte del sistema de transporte).
  • Una expansión de los mercados agrícolas para los agricultores europeos.
  • Un aumento en la seguridad del suministro de energía, a precios que dependan menos de la política mundial y del precio del petróleo.
  • Una producción de subproductos útiles, como proteínas para piensos y productos energéticos, como paja para calefacción y producción de energía.

En conclusión, el SVO es una tecnología en busca de un nicho. Una oportunidad adecuada sería convertirse en el combustible primario para el sector agrícola. Pero la decisión debe sopesarse frente a otros biocombustibles que compiten por el mismo fin:

  • El biodiesel tiene costes de producción más elevados, es menos respetuoso con el medio ambiente, pero puede mezclarse fácilmente con diesel fósil y utilizarse en motores no modificados.
  • El bioetanol da generalmente mayores rendimientos energéticos por hectárea, pero menos subproductos. Al mismo tiempo, el bioetanol sustituye a la gasolina, que es un producto excedentario en el mercado europeo, debido al aumento de la demanda de diesel y a la disminución de la demanda de gasolina.

La conclusión está lejos de ser clara, pero si el SVO constituye una opción, el nicho de los vehículos y la maquinaria agrícolas parece ser la oportunidad más prometedora.

Palabras clave

aceite vegetal puro, política de combustibles alternativos, seguridad del suministro, estrategia de mercado

Notas/Referencias

1. Página principal de Elsbett Technologie GmbH. Localizable en www.elsbett.de

2. El Blair House Agreement es un acuerdo ente la UE y EE.UU. sobre las subvenciones a la agricultura. En este contexto es de suma importancia el límite acordado sobre la extensión por la cual los agricultores pueden recibir subsidios para la producción de semillas oleaginosas con fines no alimentarios.

3. Widmann, B. Production of vegetable oils in decentral plants and aspects of quality management - Investigation of plants in practice to optimise the process. Universidad de Munich, Centro de Ingeniería Agrícola. Presentado en la 10ª Conferencia Europea de Biomasa para Energía e Industria, 1998.

4. Norma de Calidad para el Aceite de Colza como Combustible (RK-Qualitätsstandard). LTV-Arbeitskreis Dezentrale Pflanzenölgewinnung, Weihenstephan. http://dec2.tec.agrar.tu-muenchen.de/planzoel/rkstandard.html

5. Página principal de Nordvestjysk Folkecenter for Vedvarende Energi. Disponible en danés en: www.folkecenter.dk

6. Notat vedørende emissioner fra forbrændingsmotorer, plante olie sammenlignet med diesel. Artículo sobre emisiones de SVO por Niels Ansø, Nordvestjysk Folkecenter for Vedvarende Energi. 2000. Disponible en danés en: www.folkecenter.dk

7. La página principal de Die Vereinigten Werkstätten für Pflanzenöltechnologie contiene una lista de los puntos de suministro de combustible en Alemania. Disponible en: http://www.pflanzenoeltankstellen.de/ Otro sitio con una lista similar está disponible en: http://www.reorust.de

8. Note: Rape seed oil for transport 1: Energy balance and CO2-balance. Artículo de Jacob Bugge, Folkecenter for Renewable Energy. 2000. Disponible en inglés en: http://ww.folkecenter.dk/plant-oil/publications/energy_co2_balance.pdf

9. WGK (Wassergefährdungslassen): Las categorías alemanas de riesgos para el agua. Disponible en: http://www.folkecenter.dk/plant-oil/WGK_ENG.htm

Contacto

Peder Jensen, IPTS

Tel.: +34 95 448 82 89, correo electrónico: peder.jensen@jrc.es

Sobre el autor

  • Peder Jensen trabaja en el IPTS en el Grupo de Transporte y Movilidad. Sus principales temas de investigación son las nuevas soluciones al transporte, tecnológicas y organizativas, incluyendo los nuevos combustibles para el transporte. Antes de incorporarse al IPTS trabajó durante dos años sobre tarifas de peaje basadas en la distancia, en la Universidad Técnica de Dinamarca, donde fue Profesor Asociado de Telemática del Transporte.

Índice Revista 74


ARTICULO EN PRENSA



jueves, 21 de enero de 2010

LOS FABRICANTES SE APUNTAN

Primero fue Deutz, por medio de su división agrícola Deutz-Fahr, después se sumó Fendt aprovechando la tecnología de Deutz. En 2008 John Deere ya movió ficha y presentó su alternativa para AVP. Ahora parece que FIAT se quiere sumar y además quiere ser la primera marca en utilizar aceites que no sean el de colza. El siguiente artículo habla de un proyecto brasileño en colaboración de FIAT.
Poco a poco parece que los fabricantes se están posicionando en la tecnología del AVP, una tecnología que tiene mucho mercado potencial y que hasta el momento nadie había abordado de forma clara.

il se investiga el uso directo de aceite vegetal puro como combustible

Posted on Jueves 21 Enero 2010

  • Esta previsto que el proyecto sea presentado en febrero de 2010

El Instituto Nacional de Metrología, Normalización y Calidad Industrial de Brasil (Inmetro) está desarrollando un proyecto sobre biocarburantes basado en el empleo directo de aceite vegetal en motores diesel. La iniciativa se está llevando a cabo en colaboración con la empresa de automoción FIAT.

El presidente de Inmetro, João Jornada, subraya que el proyecto pretende prescindir del proceso de transformación industrial de la materia prima. En sus propias palabras, “no es necesario hacer el biodiesel” sino que “el agricultor puede ir a su plantación, recolectar los granos de los que dispone, como por ejemplo de soja, molerlos, filtrarlos y usarlos directamente en su motor”.

Está previsto que el proyecto, todavía en fase experimental, sea presentado oficialmente en febrero por el presidente del Gobierno de Brasil, Luiz Inácio Lula da Silva.

También en el área de Biocombustibles, el organismo dependiente del Gobierno de Brasil pretende consolidar este año uno de los acuerdos de colaboración más importantes firmados en 2009 con el National Institute of Standards and Technology (Nist), órgano equivalente en Estados Unidos. Ambas entidades desarrollan conjuntamente “los primeros estándares para la medición de la calidad de los biocarburantes” expone el presidente de Inmetro. En este sentido, João Jornada califica de “fundamental” la creación de una referencia internacional de calidad.

Estos patrones están siendo actualmente usados por los principales laboratorios de la Unión Europea al objeto de evaluar la capacitación de dichos laboratorios para medir la calidad de los combustibles. Esta actuación se está ejecutando en el marco de un proyecto con la Unión Europea denominado Biorama.

Fuente: www.capitalnews.com.br www.agenciabrasil.gov.br